The Functionalisation of Methyl Groups in 4,4-Dimethyl-steroids

By J. M. MIDGLEY, J. E. PARKIN, and W. B. WHALLEY*

(The School of Pharmacy, The University, London, W.C.1)

Summary Functionalisation of methyl groups in 4,4-dimethyl- 5α -19-nor- and 4,4-dimethyl- 5α -androstanes has been investigated.

ALTHOUGH functionalisation of the 14α -methyl residue in lanostane derivatives has been extensively investigated,¹ there is only one report² of the similar modification of the 4,4-dimethyl groups. We now report an investigation in this area which is of potential biogenetic interest and relevant to the problem of the conformation of the A-ring in 4,4-dimethyl-steroids.

Thus, hydroboration of (1; R = Me) [prepared from testosterone] gave (i) the 6α -hydroxy- 5α -androstan-3-one derivative (2; $R^1 = Me$, $R^2 = H$), (ii) the corresponding 6β -hydroxy- 5β -androstane (3), and (iii) the 7α -hydroxy- 5α -androstane (4), the structure of which was established by an unexceptional series of reactions.

Sarett oxidation of (2; $\mathbb{R}^1 = \mathrm{Me}$, $\mathbb{R}^2 = \mathrm{H}$) gave the ketone (5; $\mathbb{R} = \mathrm{Me}$) which was reduced by lithium aluminium hydride (but not by sodium borohydride) to the 3,3ethylene acetal of 4,4-dimethyl-6 β -hydroxy-5 α -androstan-3-one which with phosphorus oxychloride-pyridine smoothly re-formed (1; $\mathbb{R} = \mathrm{Me}$). Similarly, oxidation of (3) gave the 5 β -6-oxo-androstane (6). Both (5; $\mathbb{R} = \mathrm{Me}$) and (6) resisted epimerisation by base, but formed an equilibrium mixture of the corresponding 3,6-diketones with acid.

Hydroboration of (1; R = H) gave (2; R¹ = R² = H) (80%) which was oxidised to (5; R = H). This, with sodium borohydride furnished the 6α -ol (2; R¹ = R² = H) (10%) and the 6β -ol (80%), which with phosphorus oxychloride-pyridine re-formed (1; R = H). Stepwise Wolff-Kishner reduction of (5; R = H) gave 4,4-dimethyl-19-nor- 5α -androstane identical with a specimen prepared from 3-oxo-4,4-dimethyl-19-nor- 5α -androstan-17 β -ol.³

Photolysis of the 6α -nitrite (2; $\mathbb{R}^1 = Me$, $\mathbb{R}^2 = NO$) gave inter alia the oxime (7; $\mathbb{R} = Me$) (56%). Similarly, the corresponding 6β -nitrite gave the 4β -oxime (8; $\mathbb{R} = Me$) (5%) and the 19-oxime (9) (21%). Identification of (8; $\mathbb{R} = Me$) and (9) followed from the n.m.r. and mass spectra of the corresponding products from the analogous 4,4-bistrideuteriomethyl-steroids. Treatment of (7; $\mathbb{R} = Me$) with acid furnished, successively, the isoxazoline (11; $\mathbb{R} = Me$) and the cyanide (12; $\mathbb{R} = Me$). Photolysis of 4,4-dimethyl- 6α -nitrito- 5α -androstan-3-one furnished a complex mixture containing, inter alia, a compound to which the structure (10) (17%) is assigned, from spectral evidence.

In the 19-nor-series, photolysis of the 6α -nitrite (2; $R^{1} = H$, $R^{2} = NO$) gave the oxime (7; R = H) (54%) which, with acid, gave successively the isoxazoline (11; R = H) [also obtained by photolysis of the 3-ketone corresponding to (2; $R^{1} = H$, $R^{2} = NO$)], and the cyanide (12; R = H). Photolysis of the 6β -nitrite gave the 4-oximino-derivative (8; R = H) (60%) which was converted by acid into the isoxazoline (13) and thence into the γ -lactone (14). This, with base, furnished (15). Photolysis of 4,4dimethyl-19-nor- 6β -nitrito- 5α -androstan-3-one gave (13) (42%) together with the ring-A expansion product (16) (10%).

Our photolyses, particularly those with the 6β -nitritoderivatives, provide evidence for the conformation (at

least in the transition state) of ring A. Thus, the high yield (60%) of (8; R = H) suggests that ring A approximates closely to the 'normal' chair in the 19-nor-series. In contrast, the preferential production of the 19-oxime (9)

rather than (8; R = Me) is compatible (in accord with other evidence⁴) with the deformation of ring A to a flattened chair, in the androstane series.

All new compounds had the requisite spectral and analytical characteristics.

(Received, May 6th, 1970; Com. 690.)

 ¹ T. J. Bentley, J. F. McGhie, and D. H. R. Barton, *Tetrahedron Letters*, 1965, 2497; J. Fried, J. W. Brown, and L. Borkenhagen, *ibid.*, 1965, 2499; C. W. Shoppee, N. W. Hughes, and R. E. Lack, *J. Chem. Soc.* (C), 1966, 2359.
² M. Fétizon and P. Foy, *Chem. Comm.*, 1967, 1005.
³ J. M. Midgley, W. B. Whalley, and (in part) G. F. Katekar and B. A. Lodge, *Chem. Comm.*, 1965, 169.
⁴ G. Ferguson, E. W. Macaulay, J. M. Robertson, J. M. Midgley, and W. B. Whalley, *Chem. Comm.*, 1970, in the press.